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1. Introduction. Many boundary value problems of interest in mathematical 
physics can be finally reduced to the determination of the proper elements of a 
Sturm-Liouville equation. The most general form of these equations is: 

(1) +d [p(x) dy(x)] + q(x)y(x) + Xr(x)y(x) = 0 

with a < x < b, and the problem is to determine the particular values of the X 
parameter (eigenvalues) for which Eq. (1) possesses nonidentically zero solutions 
(eigenfunctions) obeying two boundary conditions of the type: 

(2,a) Aly(a) + A2p(a) y(a) -O 
dx 

(2, b) Bly(b) + B2p(b) d(b) - 0, 
dx 

where the values of the constants A1 , A2 and B1, B2 are not simultaneously zero. 
Several methods have been proposed to determine the proper elements (i.e. 

eigenvalues and eigenfunctions) of Sturm-Liouville equations. Most of them have 
been reviewed by Kopal [1], but we shall examine one of them, the so called Ray- 
leigh-Ritz method, in order to explain the main defect they have in common and to 
judge their general efficiency. This method was originally proposed by Ritz [2]. By 
transformations whose details will not be given here but which are described in 
many classical texts it leads to the solutions of equations of the form: 

(3) det 1f Dik-XHik 11 = 0, 1 < i, k < n 

where the Dak and Hak are the values of quadratic functionals for the ith and kth 
elements of a sequence of trial functions chosen once for all. Under rather general 
conditions, it can be shown that for indefinitely increasing values of n, the solutions 
of Eq. (3) decrease monotonically and converge to the eigenvalues of the originally 
stated problem. More precisely, if A is the mth solution of Eq. (3) when the 
solutions are ranged in increasing order, then the sequence of all the numbers Xm (n) 

with n = m, m + 1, ... is decreasing and converges to the mth eigenvalue of the cor- 
responding Sturm-Liouville equation when its eigenvalues are also ranged in increas- 
ing order. The big defect of this approximation method is its inability to furnish any 
estimate of the difference between one of the numbers Am(n) and the corresponding 
eigenvalue Xm. A theoretical convergence is not sufficient because the solution of 
Eq. (3) gets extremely complicated when n increases. A rapid convergence is thus 
required but this can only be reasonably expected if we possess beforehand a rather 
precise knowledge of the general behaviour of the eigenfunctions. This is not usually 
the case. An even more serious defect of this method is that high values of n are 
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niecessary to obtain the higher order eigenvalues aind to reduce a trutncation-like 
error for the low order eigenvalues appreciably. When however such large values of 
n are used, the deterruinantal Eq. (3) for X turnis out to be of a correspondingly high 
degree anld its solution may then enitail such an accumulation of round-off errors as 
to prevent any further diminution of the total error affecting the computed eigen- 
values. The necessity to compromise betweeni these two sources of error severely 
restricts the accuracy obtainiable. Similar restrictioins are encounitered when other 
previously developed methods are applied. 

Thus, the methods in the current mathematical literature devoted to the problem 
of approxinmating the proper elements of a Sturm-Liouville problem are not very 
reliable. Specialists have, however, succeeded in improving those methods. Unfortu- 
nately their results are not very well known by the iinereasing number of scientists 
who are now able to program an electronic computer using one of the numerous 
machine oriented languages. For this reason, it seems interesting and useful to 
describe a niew method which could be easily used by programmers who do not want 
to spend time with the theoretical numerical aspects of their problems. In what 
follows, the underlying principle of the method will be explained and it will be shown 
how it can be applied. A particularly simple case will then be treated in order to 
illustrate the efficiency of the inew method. It will finally be shown that it canl be 
extended to singular Sturm-Liouville equations. 

2. The New Approximation Method. The method is based on the remarkable 
properties of a function introduced in a change of dependent variables that consider- 
ably simplifies the theoretical study of those equatioins. Continual reference will be 
made to references [4] and [5] where all details aind proofs omitted here for sake of 
brevity can be found. It will be assunmed that in the interval a < x < b, the function 
p(x) is positive and possesses a first continuous derivative, that the function r(x) 
is positive and continuous and that the function q(x) is continuous. The new de- 
pendent variable p(x) and 0(x) may be introduced by means of the defining equa- 
tions: 

(5, a) y(x) = p(x) sin 6(x), 

dy(x) 
( 5, b) p(x) = p(x) Cos 6(x). (5,b) 

~~~~~dx 
According to Eq. (1) and boundary conditions (2, a) and (2, b), the function 

0(x) obeys the differential equation: 

(6) d(x - =( Cos2 6(x) + [q(x) + Xr(x)] sin2 6(x) 

and satisfies the boundary conditions: 

(7, a) A1 sin 6(a) + A2 cos 0(a) = 0, 

(7, b) B1 sin 6(b) + B2 cos O(b) = 0, 

while the function p(x) obeys the differential equation: 

(8) -dp(x) = p(x) sin O(x) cos 6(Z) 1x-q(x) - Xr(x)] dx L p(x)j 
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and satisfies the condition of never being zero in the interval a < x < b. 
Let us now determine a priori permissible initial and final values for the function 

0(x) by means of the auxiliary conditions: 

(9, a) A1 sin a + A2 cos a = 0, 0 < a < ir 

(9, b) B1sin + B2cos A = 0, 0 < ? <. 

Boundary conditions (7, a) and (7, b) can then be replaced by the equivalent con- 
ditions: 

(10, a) 0(a) a, 

(10, b) 0(b) A+ n7r, 

where n is any integer (positive, negative or null). 
The solution 0(x, X) of equation (6) satisfying an initial condition deduced from 

(10, a) and (9, a) possesses the following interesting properties. 
As is shown in [4] and [5], 0(x, X) is a monotonically increasing function of the 

argument X and satisfies the equalities: 

(11, a) lim 0(b, X) = 0, 

(11, b) lim 0(b, X) = +oo. 

Moreover, the function: 

(12) x(x,X) = a0(x, X) 

is a solution of the differential equation: 

dX (x, X)F__ 
(13) d = x(x, X) [q(x) + Xr(x)r - sin 20(x, X) + r(x) sin2 0(x, X) 

and it obviously satisfies the initial condition: 

(14) x(a, X) -0. 

From this, we can deduce that x(x, X) is positive everywhere in the interval a < 
x < b. Equation (13) and initial condition (14) lead to the expression: 

x(x,I) =expf [q(t) + Xr ( P)- sin 20(t, X) dE 

f r(7) sin2 0(X, X) exp {-J] [q(t) + Xr(t) - ]sin 20}, X) df dq. 

Because of our hypothesis concerning the functions p(x), q(x) and r(x), this 
function is certainly nonnegative in the interval a < x ? b. Moreover, it can be zero 
at a point x = c of this interval only if the function sin 0(x, X) is identically zero 
and thus constant in the interval a < x < c. This cannot happen however because at 
all points where the function sin 0(x, X) vanishes, we have according to (6): 
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(16) dO(x, ) X_ >0, 
dx p(x) 

and also: 

(17) d sin 6(x, X) 1 
dx p(x) 

and this would contradict the previous deduction that sin O(x, A) must be constant 
in the interval a < x < c. 

Now, the derivative x(b, X) of the function O(b, X) with respect to X is positive. 
When this is considered with the relations (11, a) and (11, b) it may be clearly seen 
that the second boundary condition (10, b) considered as an equation for X is 
solvable only for nonnegative values of the integer n and that it then possesses one 
and only one solution. The calculation of the (n + 1) th eigenvalue XA is thus equiva- 
lent to the solution of the equation: 

(18) 3 + nir-0(b, X) =O. 

In the present case, the Newton-Raphson approximation method leads to the 
algorithm: 

(19) Xn,k+l - Xn,k + [i3 + n7r - 6(b, Xn,k)] X (b, Xn,k) 

where Xn,k denotes the kth approximation to the eigenvalue X,n . The application of 
the algorithm (19) does niot present any difficulties, especially when an electronic 
computer is available for the numerical integration of Eqs. (6) and (13), or (6) and 
(15). Nothing can eiisure the convergence of the successive estimates Xn,k to the 
corresponding eigenvalue X,A , but obtaining a converging sequence of approxima- 
tions is no longer a problem. In fact, it can be seen that the correction proposed by 
formula (19) for a known approximation is always in the right direction. In other 
words, this correction is positive (resp. negative, zero) if the chosen approximation 
is less than (resp. greater than, equal to) the sought eigenvalue. Then the only 
accident that must be avoided is to disturb or even to make the convergence im- 
possible by obtaining successive approximations Xn,i X xn,k and Xn,J (i < k < j) as 
shown in the following diagram: 

Xn, j Xn,i Xn,k 

Whenever such a situation occurs, it is however possible to realise a sequence of 
successive approximations, which certainly converges to the sought eigenvalue Xn , 
by modifying slightly the iteration process. As remarked just above, the sign of the 
correction proposed by formula (19) to a given approximation immediately shows 
if this value is a lower or a upper bound for the sought eigenvalue. At each step in the 
iteration process, a greatest lower bound m and a least upper bound M for Xn can 
thus be determined by using all preceding approximations. The last approximation 
obtained can then be accepted if it falls in the interior of the interval in < X < M, 
but if it fell outside, it is necessary to replace it by some inner point of this interval, 
the middle point for example. There is then no difficulty in seeing that a sequence of 
successive approximations which is convergent to the sought eigenvalue is always 
obtained. 
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TABLE I 

n Xcomp X theor E X 106 Iterations 

0 2.46739 2.467401 4 9 
1 22.2068 22.20661 8 1 
2 61.6863 61.68503 21 3 
3 120.907 120.9026 36 3 
4 199.869 199.8595 48 3 

3. Applications. 
A. The efficiency of the proposed method for the approximation of the proper 

elements of Sturm-Liouville equations, will now be investigated on a particularly 
simple example. 

Consider the differential equation: 

(20) d2y(x) + y() = 0 

and the boundary conditions: 

(21, a) y(O) = 0, 

(21, b) d 0. 
dx 

Elementary calculations show that the proper elements of this problem are given 
by: 

(22, a) An = (2n + 1)27r2/4, 

(22, b) yn(x) = sin (2n + 1)7rx/2. 

In Table I, we compare the eigenvalues as they have been determined by our method 
(Ncomp) to their exact values (Xtheor) for the first five values of the integer n. As an 
illustration, the relative errors and the required numbers of iterations are also given. 
It can thus be seen that the method provides good results in this case. 

Practical problems are not so simple to handle and with many the most important 
question is the determination of the relative errors. By considering formula (19) once 
more, it can be said from a naive point of view that if the method used to solve Eqs. 
(6) and (13), or (6) and (15) was perfectlyexact, then the errors on the computed 
eigenvalues could be made arbitrarily small. This is however sufficient for claiming 
that the iteration process can be led in such a way that the error in the obtained 
results are introduced only when solving (6) and (13), or (6) and (15). This is seen 
if the maximum error e for the quantity 0(b, A) can be determined beforehand and if 
the iteration process is then stopped when the correction to a given approximation 
is much smaller than e. 

As a last remark, it must be said that it is difficult to give any valuable indica- 
tions on how much work is required in each iteration step: this depends too much on 
the adopted method for solving the involved differential equations. In the examples 
chosen here, as illustration, only a general method has been retained. This is due to 
the fact that the present differential equations can be solved very easily analytically, 



404 M. GODART 

so that there is no niatural limitation in the improvements that can be brought to the 
numerical solution of these equations. 

B. The theory as developed to this point is not applicable to cases for which the 
function p(x) can be zero at one or both of the extremities x = a or x = b. The 
method proposed is however applicable to these cases, after being slightly modified 
For sake of brevity, the theoretical aspects will be omitted and only intuitive argu- 
ments will be used. These can, however, be established rigorously. Twoexamples 
will be treated in order to indicate the suggested extension. 

1. Consider the differential equationi: 

(23) d FX dx) + ?Xxy(x) = 0 

and the boundary conditions: 

(24, a) IY(O)1 < +00, 
(24, b) y(l) = 0. 

It can easily be seen that the proper elements of this Sturm-Liouville problem are 
given by: 

(25, a) An = jn 
2 

(25, b) Yn(X) = xl/23 (jnx) 

where J0 is the Bessel function of order 0 and wherejn is its (n + 1)th positive zero. 
Equation (6) shows that the singularity at x = 0 can be avoided if we take: 

(26, a) a = r/2. 

By choosing A as explained in the second paragraph, the approximation method may 
be applied. The calculations have been performed and the obtained results are given 
in Table II in the same form as used for Table I. Once more, the method has given 
reliable results. 

2. Consider finally the differential equation: 

(27) d 1 X2) dy (x)] + Xy(x) = 0 

and the boundary conditions: 

(28, a) Y(-1)I < +OO, 

(28,b) IY(+?1) < +00, 

It is well known that the proper elements of this problem are given by: 

(29, a) n= n(n + 1), 

(29, b) Y.(X) = Pn(X), 

where Pn (x) is the Legendre polynomial of order n. Equation (6) shows that the 
singularity at x = -1 can be avoided if as before: 

(26, a) a = 7r/2. 
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TABLE II 

nl Xcomp Xtheor e X 106 Iterations 

0 5.78307 5.7831862 20 10 
1 30.47111 30.471262 5 10 
2 74.88676 74.887006 3 11 
3 139.0414 139.04027 8 11 
4 222.9352 222.93231 13 9 

TABLE III 

n Xcomp Xtheor e X 106 Iterations 

0 0 0 _ 1 
1 1.99997 2 15 8 
2 5.99984 6 27 10 
3 11.9996 12 33 9 
4 19.9991 20 45 13 

The method however is no longer applicable in its originial form because of the 
second singularity at x = +1, yet its basic idea may be employed. For this, intro- 
duce some intermediate point, say x 0. For an arbitrary value of X, the equations 
(6) and (13) or (6) and (15) can be solved in the interval-1 < x < 0 taking the 
initial conditions (14), (10, a) and (26, a) into account. The values at x = 0 of the 
functions 0(x, A) and x(x, A) just obtained are then denoted by 6JL(X) and XL(X)* 

In exactly the same manner, the singularity at x = 1 can be avoided by choosing: 

(26, b) 0 = ir/2. 

Taking into account the initial conditions (14), (10, b) and (26, b), the equations 
(6) and (13) or (6) and (15) can be solved in the interval 0 < x < 1. The values at 
x = 0 of the new functions 0(x, A) and x(x, N) that have been obtained are then de- 
noted by OR(X) and XR(N).) 

It can be shown that the derivative XL(N) of the function OL(X) with respect to 
X is always positive and that the derivative XR(X) of the function OR(X) with respect 
to X is always negative. Moreover, the eigenvalues are the solutions of the equation: 

(30) OL(X) - OR(X) -0 

Equation (19) can then be replaced by the new algorithm: 

(31) Xn,k+1 = Xn,k - [6R(Nn,k) - OL(Nn,k)]/[XR(n,k) - XL(n,k)]. 

This new form of the approximation method has been applied to the determination 
of the eigenvalues of the Sturm-Liouville problem defined by the relations (27), 
(28, a) and (28, b). The results obtained in this case are summarized in Table III. 
Once more, the comparison shows that the method has provided excellent results. 

4. Conclusion. A new method of successive approximations has been proposed 
in order to solve eigenvalue and eigenfunction problems associated with Sturm- 
Liouville equations. The examples treated show that the convergence is reasonably 
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rapid and that the proper elements can be determined with an actual accuracy 
which is only limited by the errors inherent to the numerical resolution of Eqs. (6), 
(13) and (15). It is thus highly recommended to replace numerical determinations 
by analytic expressions whenever this is possible. The number of iterations of the 
approximation method is highly dependent on the first estimates chosen for the XA . 
These values must then be determined as accurately as possible either by comparison 
methods, by an asymptotic expression, or by any other means. In all cases, some 
theoretical study is always helpful for the numerical solution of a Sturm-Liouville 
problem. 
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